Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
Sci Rep ; 11(1): 23465, 2021 12 06.
Article in English | MEDLINE | ID: covidwho-1556248

ABSTRACT

Human coronavirus NL63 (HCoV-NL63) mainly affects young children and immunocompromised patients, causing morbidity and mortality in a subset of patients. Since no specific treatment is available, this study aims to explore the anti-SARS-CoV-2 agents including favipiravir and remdesivir for treating HCoV-NL63 infection. We first successfully modelled the 3D structure of HCoV-NL63 RNA-dependent RNA polymerase (RdRp) based on the experimentally solved SARS-CoV-2 RdRp structure. Molecular docking indicated that favipiravir has similar binding affinities to SARS-CoV-2 and HCoV-NL63 RdRp with LibDock scores of 75 and 74, respectively. The LibDock scores of remdesivir to SARS-CoV-2 and HCoV-NL63 were 135 and 151, suggesting that remdesivir may have a higher affinity to HCoV-NL63 compared to SARS-CoV-2 RdRp. In cell culture models infected with HCoV-NL63, both favipiravir and remdesivir significantly inhibited viral replication and production of infectious viruses. Overall, remdesivir compared to favipiravir is more potent in inhibiting HCoV-NL63 in cell culture. Importantly, there is no evidence of resistance development upon long-term exposure to remdesivir. Furthermore, combining favipiravir or remdesivir with the clinically used antiviral cytokine interferon-alpha resulted in synergistic effects. These findings provided a proof-of-concept that anti-SARS-CoV-2 drugs, in particular remdesivir, have the potential to be repurposed for treating HCoV-NL63 infection.


Subject(s)
Adenosine Monophosphate/analogs & derivatives , Alanine/analogs & derivatives , Amides/chemistry , Antiviral Agents/chemistry , Coronavirus NL63, Human/enzymology , Pyrazines/chemistry , RNA-Dependent RNA Polymerase/chemistry , Adenosine Monophosphate/chemistry , Adenosine Monophosphate/metabolism , Adenosine Monophosphate/pharmacology , Alanine/chemistry , Alanine/metabolism , Alanine/pharmacology , Amides/metabolism , Amides/pharmacology , Animals , Antiviral Agents/metabolism , Antiviral Agents/pharmacology , Binding Sites , Cell Culture Techniques , Cell Line , Coronavirus NL63, Human/physiology , Haplorhini , Humans , Molecular Docking Simulation , Pyrazines/metabolism , Pyrazines/pharmacology , RNA-Dependent RNA Polymerase/metabolism , Virus Replication/drug effects
2.
Proteomics ; 21(2): e2000246, 2021 01.
Article in English | MEDLINE | ID: covidwho-1384281

ABSTRACT

The genome of coronaviruses, including SARS-CoV-2, encodes for two proteases, a papain like (PLpro ) protease and the so-called main protease (Mpro ), a chymotrypsin-like cysteine protease, also named 3CLpro or non-structural protein 5 (nsp5). Mpro is activated by autoproteolysis and is the main protease responsible for cutting the viral polyprotein into functional units. Aside from this, it is described that Mpro proteases are also capable of processing host proteins, including those involved in the host innate immune response. To identify substrates of the three main proteases from SARS-CoV, SARS-CoV-2, and hCoV-NL63 coronviruses, an LC-MS based N-terminomics in vitro analysis is performed using recombinantly expressed proteases and lung epithelial and endothelial cell lysates as substrate pools. For SARS-CoV-2 Mpro , 445 cleavage events from more than 300 proteins are identified, while 151 and 331 Mpro derived cleavage events are identified for SARS-CoV and hCoV-NL63, respectively. These data enable to better understand the cleavage site specificity of the viral proteases and will help to identify novel substrates in vivo. All data are available via ProteomeXchange with identifier PXD021406.


Subject(s)
COVID-19/virology , Coronavirus 3C Proteases/metabolism , Coronavirus NL63, Human/enzymology , Peptide Fragments/analysis , SARS-CoV-2/enzymology , Severe acute respiratory syndrome-related coronavirus/enzymology , Viral Proteins/metabolism , COVID-19/metabolism , Cells, Cultured , Endothelial Cells/metabolism , Endothelial Cells/virology , Epithelial Cells/metabolism , Epithelial Cells/virology , Eukaryotic Initiation Factor-4G/metabolism , Host-Pathogen Interactions , Humans , Lung/metabolism , Lung/virology , Substrate Specificity
3.
mBio ; 12(1)2021 01 19.
Article in English | MEDLINE | ID: covidwho-1066823

ABSTRACT

By late 2020, the coronavirus disease 2019 (COVID-19) pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), had caused tens of millions of infections and over 1 million deaths worldwide. A protective vaccine and more effective therapeutics are urgently needed. We evaluated a new poly(ADP-ribose) polymerase (PARP) inhibitor, stenoparib, that recently advanced to phase II clinical trials for treatment of ovarian cancer, for activity against human respiratory coronaviruses, including SARS-CoV-2, in vitro Stenoparib exhibits dose-dependent suppression of SARS-CoV-2 multiplication and spread in Vero E6 monkey kidney and Calu-3 human lung adenocarcinoma cells. Stenoparib was also strongly inhibitory to the human seasonal respiratory coronavirus HCoV-NL63. Compared to remdesivir, which inhibits viral replication downstream of cell entry, stenoparib impedes entry and postentry processes, as determined by time-of-addition (TOA) experiments. Moreover, a 10 µM dosage of stenoparib-below the approximated 25.5 µM half-maximally effective concentration (EC50)-combined with 0.5 µM remdesivir suppressed coronavirus growth by more than 90%, indicating a potentially synergistic effect for this drug combination. Stenoparib as a stand-alone or as part of combinatorial therapy with remdesivir should be a valuable addition to the arsenal against COVID-19.IMPORTANCE New therapeutics are urgently needed in the fight against COVID-19. Repurposing drugs that are either already approved for human use or are in advanced stages of the approval process can facilitate more rapid advances toward this goal. The PARP inhibitor stenoparib may be such a drug, as it is currently in phase II clinical trials for the treatment of ovarian cancer and its safety and dosage in humans have already been established. Our results indicate that stenoparib possesses strong antiviral activity against SARS-CoV-2 and other coronaviruses in vitro. This activity appears to be based on multiple modes of action, where both pre-entry and postentry viral replication processes are impeded. This may provide a therapeutic advantage over many current options that have a narrower target range. Moreover, our results suggest that stenoparib and remdesivir in combination may be especially potent against coronavirus infection.


Subject(s)
Antiviral Agents/pharmacology , COVID-19/virology , Coronavirus NL63, Human/drug effects , Isoquinolines/pharmacology , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology , Poly(ADP-ribose) Polymerases/metabolism , Quinazolinones/pharmacology , SARS-CoV-2/drug effects , Virus Replication/drug effects , Adenosine Monophosphate/analogs & derivatives , Adenosine Monophosphate/pharmacology , Alanine/analogs & derivatives , Alanine/pharmacology , Animals , Antimetabolites/pharmacology , Azo Compounds , Chlorocebus aethiops , Coronavirus NL63, Human/enzymology , Drug Repositioning , Humans , SARS-CoV-2/enzymology , Vero Cells , COVID-19 Drug Treatment
SELECTION OF CITATIONS
SEARCH DETAIL